Actuarial Geometry: Volumetric and Temporal Diversification of Insurance Risk

Stephen J. Mildenhall

Aon Center for Innovation and Analytics, Singapore

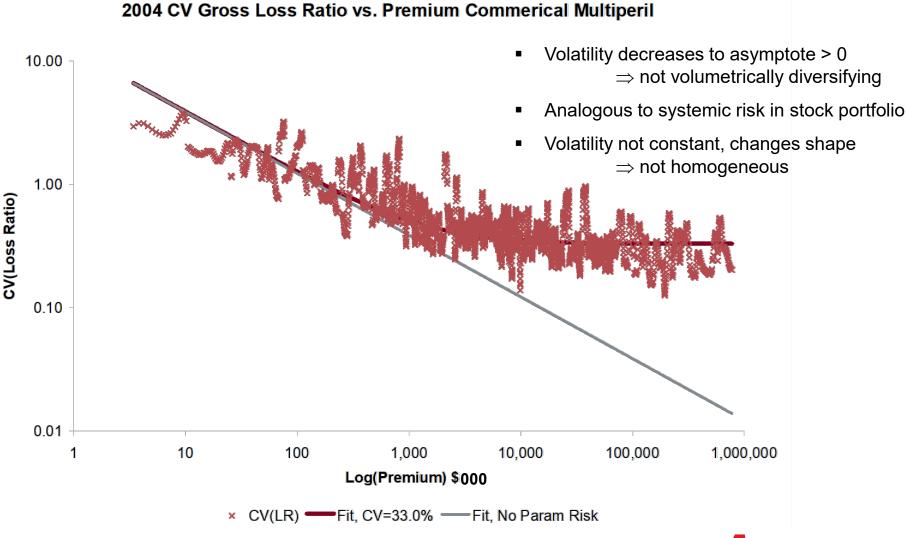
Insurance Risk and Finance Research Conference 2014

Outline

- 1. Insurance pricing frameworks
- 2. Insurance risk is not volumetrically diversifying
- 3. Insurance losses are not homogeneous with respect to volume
- 4. Homogeneous model is not even "locally" appropriate
- 5. Empirical data and supporting evidence
- 6. Four models based on Levy processes
- 7. Application to APAC region countries

1. Insurance Pricing Frameworks

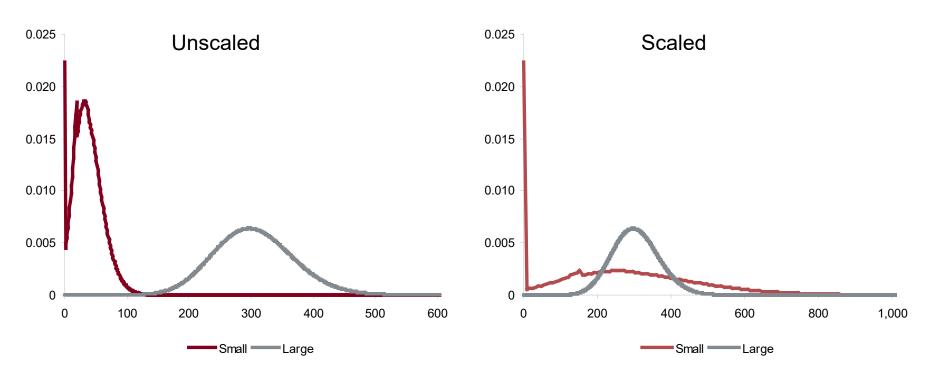
	Risk Theory	Finance	Actuarial
1900s	Bachelier		Bureau rates
1930s	Cramer-Lundberg Esscher		Bureau rates Bureau rates
1950s	Levy, Kolmogorov, Khintchine, Ito		
		Portfolio theory	Bureau rates
1960s		CAPM	Bailey investment inc.
	Buhlmann	Systemic vs. diversifiable	Ferrari, ROE
1970s	Borch	risk	1978 US u/w profit
1980s	Geometric Brownian motion	Option pricing, no arbitrage, comparables	
			Catastrophe Models
1990s		Froot et al.	
2000s	Artzner et al. coherent measure of risk	Phillips, Cummins, Allen Myers-Read	Idiosyncratic risk matters (Froot 2001)
	Wang transform		2004 US u/w profit
2010s	Levy processes, optimal dividends	Zanjani	Solvency II, ICA


AON BENFIELD

2. Insurance Risk is not Volumetrically Diversifying

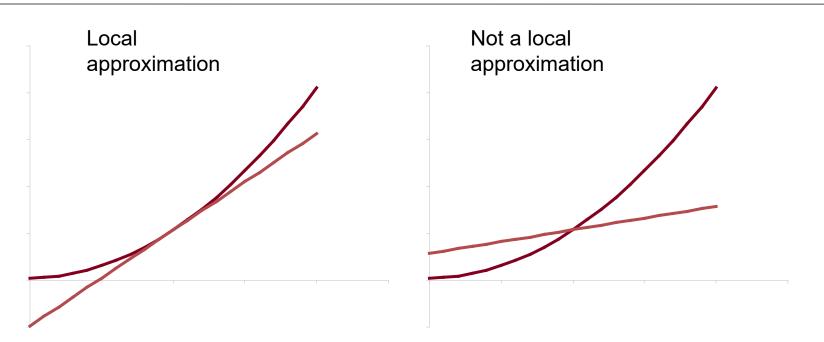
- Expected Loss (\$) = Volume (\$ / t) x Time (t)
- A(x,t) := random variable representing aggregate losses from volume x insured for time t
 E[A(x,t)] = xt = expected loss
- Insurance risk is not volumetrically diversifying, meaning
 - CV(A(x,t)) does not tend to zero as x increases, for fixed t
 - Recall coefficient of variation = CV = standard deviation / mean
- Practical meaning
 - It is impossible to diversify away all insurance risk by growing larger
- How to investigate?
 - CV(A) = CV(A / p) = CV(loss ratio), p = fixed premium
 - Look at volatility in loss ratio with volume
 - Premium (and company) effects can be removed using an ANOVA; does not change conclusions
- Data source: Aon Benfield Insurance Risk Study global database of regulatory data from 49 countries
 - Represents over 90 percent of global P&C premium

2. Risk is not Volumetrically Diversifying


AON BENFIELD

3. Insurance Losses are not Homogeneous with Respect to Volume

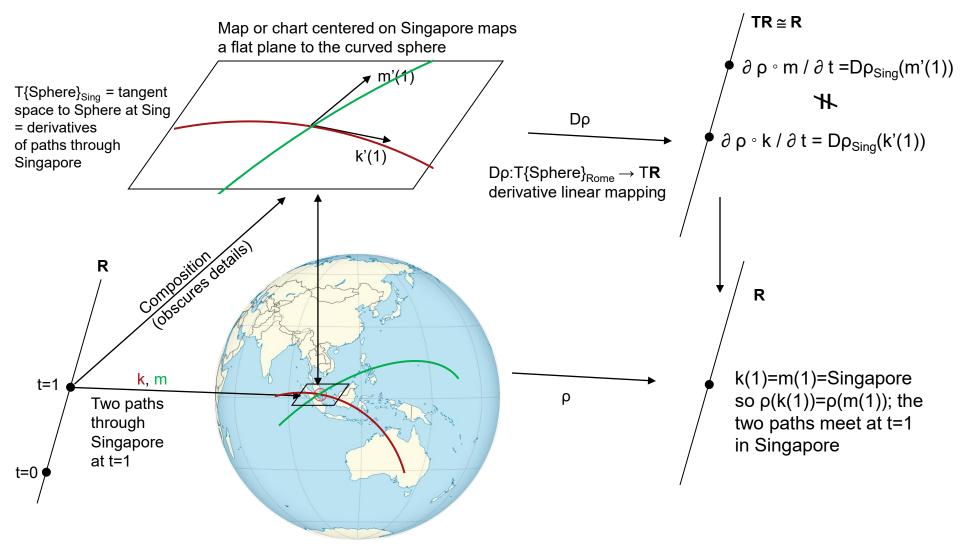
- Homogeneous model: A(x,t) = xR_t
 - R_t a "return" random variable independent of volume x
 - For assets x is position size and R_t is return or unit price
 - Introduces a natural vector space structure for assets, with basis the return vectors R_{i,t}
- Homogeneity implies
 - Shape of aggregate loss distribution independent of volume
 - No volume based diversification
 - A(x,t) has constant coefficient of variation (volatility) with x
- Homogeneous models are not appropriate for insurance
 - Consider probability of zero losses: Pr(xX=0) = Pr(X=0)
 - Implies the probability of observing a zero loss is independent of volume x


3. Insurance Losses are not Homogeneous with Respect to Volume

- Compound Poisson aggregate losses, average severity 10
 - Small: claim count 4
 - Large: claim count 32
- Homogeneous distributions would be indistinguishable in scaled plot
 - Note decrease in variance on right hand plot
- Matlab code: ifft(exp(4 * (fft(severity) 1)))

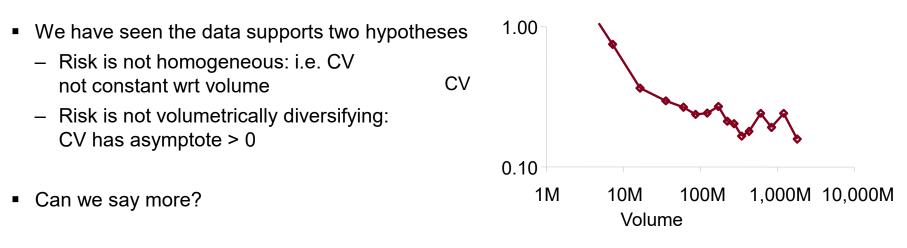
4. Homogeneity is not "Locally" Appropriate

- Consider tX₁ as a homogeneous approximation to a process X_t, agreeing at t=1
- Local approximation: one holding to first order in a neighborhood of a point
 - First-order equality required by any theory considering derivatives or marginal impacts
 - Euler-theorem, gradient based methods of capital allocation
 - Equality at a point does not imply first order approximation
- Requires notion of derivative which requires a direction



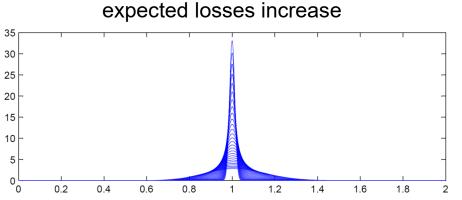
4. Homogeneity is not "Locally" Appropriate: Example

- Have two maps from $[0,\infty) \rightarrow \{ \text{ risks } \}$, agreeing at t = 1:
 - -m(t) = X(t), Poisson claim count t, (Glenn) <u>M</u>eyers embedding; not homogeneous
 - k(t) = t X(1), asset or <u>K</u>alkbrener embedding; homogeneous by construction
- Let ρ : { risks } \rightarrow **R** be a real-valued risk measure
 - Standard deviation, downside risk, higher moment, percentile (=Value-at-Risk, VaR), TVaR
- Tasche, Denault, Fischer, Myers-Read,... show we should be interested in ∂ρ / ∂ t, the rate of change of ρ with volume, in a given line of business or risk type
- Two compositions ρ ∘ k, ρ ∘ m: [0,∞) → { risks } → R both give single valued functions of a single real variable t, and we can often easily compute derivatives
- For ρ = standard deviation we have
 - $\rho \circ m(t) = \rho(m(t)) = \text{std dev}(\text{Poisson}(t)) = \sqrt{t}$, and $\partial (\rho \circ m) / \partial t = 1 / 2\sqrt{t}$
 - $-\rho \circ k(t) = \rho(k(t)) = \text{std dev}(t \text{ Poisson}(1)) = t$, and so $\partial (\rho \circ k) / \partial t = 1$



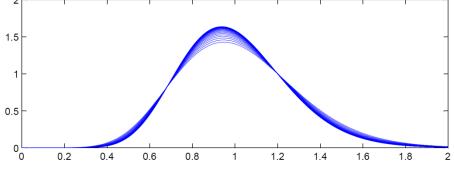
4. Homogeneity is not "Locally" Appropriate

5. Empirical Evidence


- Levy process based models, let X(.) be a Levy process
 - A(x,t) = X(xt)
 - A(x,t) = X(xZ(t))
 - A(x,t) = X(xCt)
 - A(x,t) = X(xCZ(t))

- volumetric/temporal symmetry, diversifying
- account for seasons, volumetric/temporal asymmetry
- E(C)=1, C is called a mixing variable, **symmetric, non-diversifying**
- combination, volumetric/temporal asymmetry
- The mixing variable appears unobservable, but can actually be derived from empirical data
- Tame severity distributions are irrelevant

Mixing Variables & the Distribution of Normalized Loss Ratios

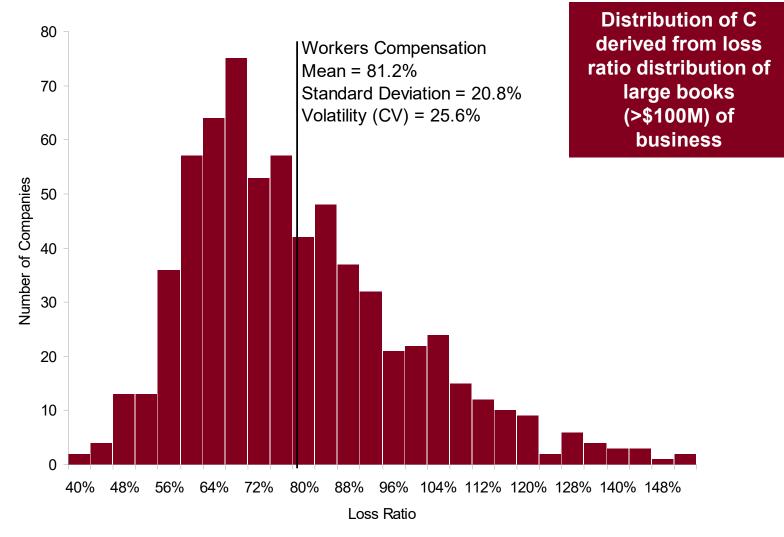

- Mixed compound Poisson: $A = X_1 + ... + X_N$, N|C ~ Poisson(nC), E(C)=1
- Normalized Loss Ratio NLR = A / E(A) converges to distribution C
- Dichotomous behavior of normalized loss ratios

No parameter uncertainty: leads to

unrealistic aggregate loss distribution as

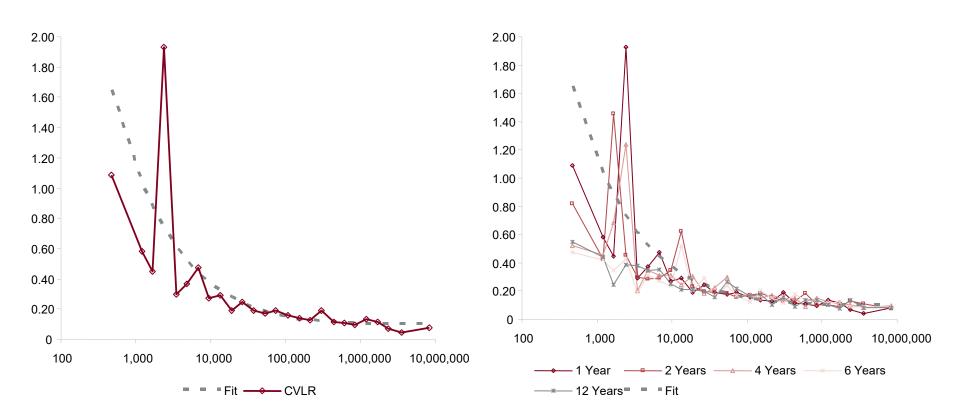
Including parameter preserves actual variability observed in data for large insurers

If C is constant, NLR converges to 1.0 in distribution


Illustration shows aggregates with Poisson frequency and larger & larger values of E(A)

If C is not constant, NLR converges to C in distribution

Illustration shows aggregates with negative binomial frequency (gamma mixing) & larger & larger values of E(A)



5. Empirical Evidence: Systemic Insurance Risk by Line

5. Empirical Evidence: Volumetric/Temporal Symmetry

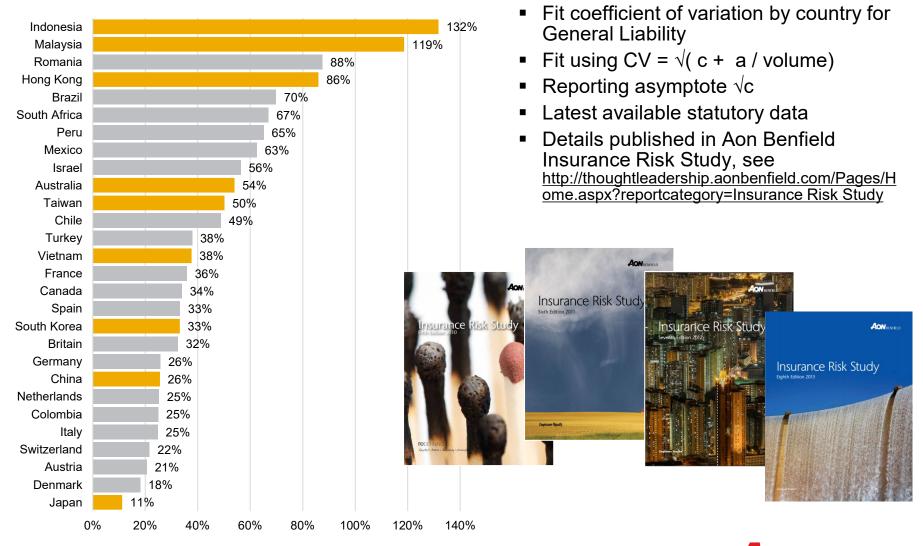
- Consider volatility of A(x,t), A(2x,t/2), A(4x,t/4) etc.
- Same relationship between volatility and volume, xt
- Data consistent with volumetric/temporal symmetry and with model A(x,t) = X(xCt)

6. Four Levy Process Models

no

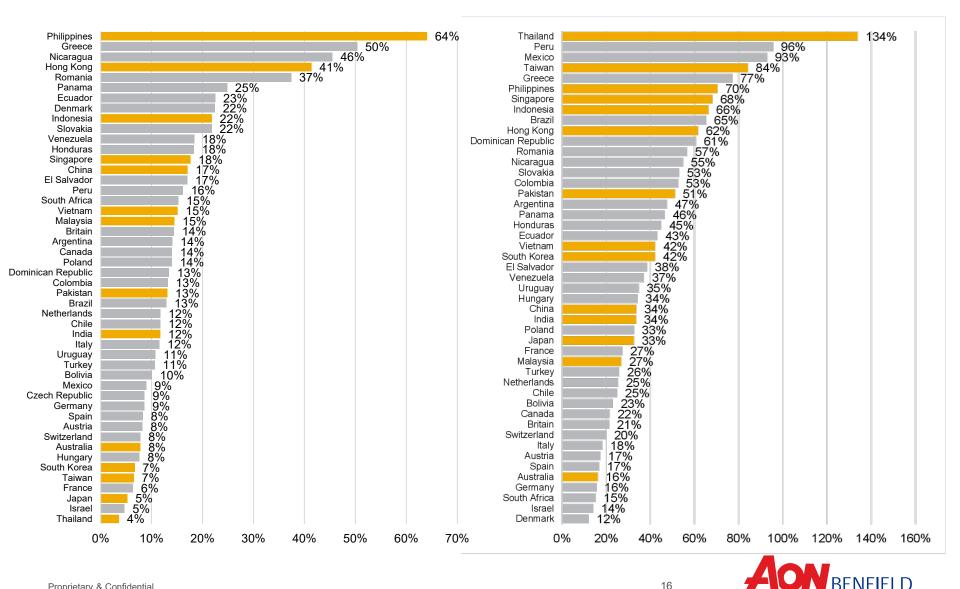
- A(x,t) = X(xt) no Volumetrically diversifying
- A(x,t) = X(xZ(t)) no
 Volumetric/temporal asymmetry
- A(x,t) = X(xCt) Yes Not volumetrically diversifying, volumetric/temporal symmetry
- A(x,t) = X(xCZ(t)) no

Volumetric/temporal asymmetry


A(x,t) = xR(t)

Constant volatility with volume

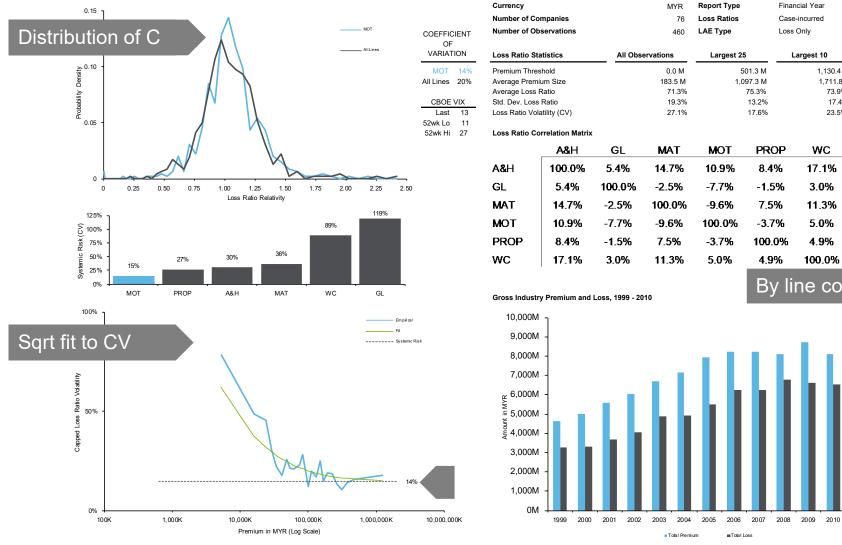
			Divers	sifying	-
Model	Variance	v(x,t)	$x \to \infty$	$t \to \infty$	Variance and
X(xt)	$\sigma^2 x t$	$\frac{\sigma}{\sqrt{xt}}$	Yes	Yes	coefficient of
X(xZ(t))	$xt(\sigma^2 + x\tau^2)$	$\sqrt{\frac{\sigma^2}{xt} + \frac{\tau^2}{t}}$	No	Yes	variation v of each model
X(xCt)	$xt(\sigma^2 + cxt)$	$\sqrt{\frac{\sigma^2}{xt} + c}$	No	No	
X(xCZ(t))	$x^{2}t^{2}\left(\frac{(c+1)\tau^{2}}{t}+c\right) + \sigma^{2}xt$	$\sqrt{\frac{\sigma^2}{xt} + \frac{\tau'^2}{t} + c}$	No	No	
xX(t)	$x^2\sigma^2 t$	σ/\sqrt{t}	Const.	Yes	



7. Application to APAC Region Countries: General Liability

7. Application to APAC Region Countries: Motor (left) and Property

Proprietary & Confidential


2013 Insurance Risk Study

Malaysia

Motor

Net Results for Financial Years 1999 - 2010

Sources: Annual Insurance Statistics, Bank Negara Malaysia ; analysis by Aon Benfield Analytics; VIX prices as of Aug 13, 2013 Proprietary and Confidential

100.0% By line correlation

Largest 10

1,130.4 M

1,711.8 M

73.9%

17.4%

23.5%

WC

17.1%

3.0%

11.3%

5.0%

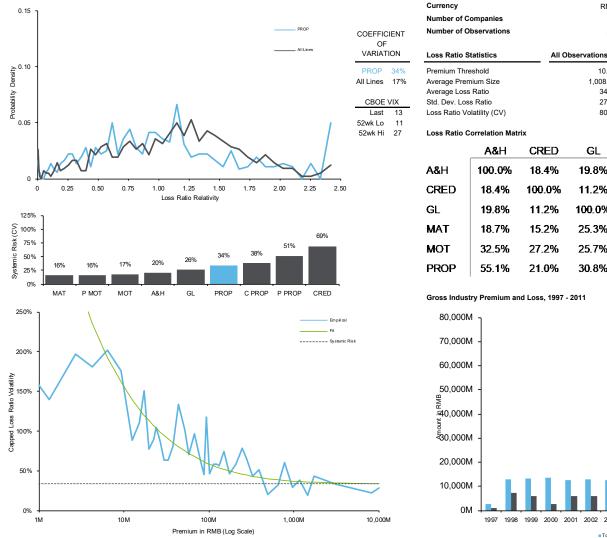
4.9%

2013 Insurance Risk Study China

Property

Gross Results for Financial Years 1997 - 2011

Financial Year

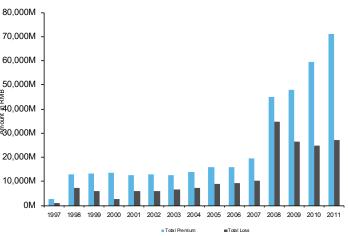

Loss & ALAE

Paid

Report Type

Loss Ratios

LAE Type



Loss Ratio S	tatistics	All O	bservations	Large	est 25	Largest 10
Premium Threshold			10.0 M		2,381.6 M	9,708.9 M
Average Pren	nium Size		1,008.8 N	1	10,178.0 M	15,165.0 M
Average Loss	Ratio		34.6%	5	53.6%	50.0%
Std. Dev. Los	s Ratio		27.7%		16.9%	20.0%
Loss Ratio Vo	latility (CV)		80.2%	5	31.5%	40.0%
Loss Ratio C	orrelation Mat	rix				
	A&H	CRED	GL	MAT	МОТ	PROP
A&H	100.0%	18.4%	19 .8%	18.7%	32.5%	55.1%
CRED	18.4%	100.0%	11.2%	15.2%	27.2%	21.0%
GL	19.8%	11.2%	100.0%	25.3%	25.7%	30.8%
МАТ	18.7%	15.2%	25.3%	100.0%	31.5%	8.5%
мот	32.5%	27.2%	25.7%	31.5%	100.0%	37.2%
PROP	55.1%	21.0%	30.8%	8.5%	37.2%	100.0%

RMB

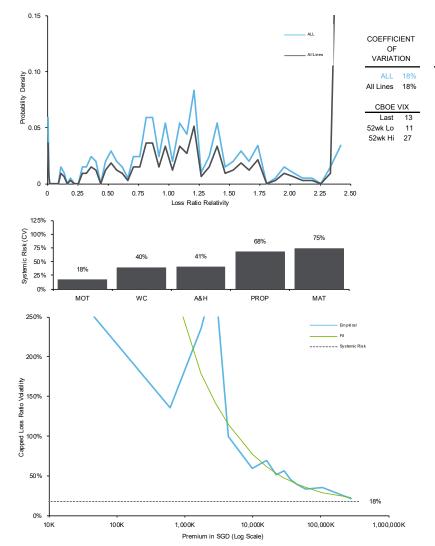
51

Gross Industry Premium and Loss, 1997 - 2011

Sources: China Insurance Yearbooks; analysis by Aon Benfield Analytics; VIX prices as of Aug 13, 2013 Proprietary and Confidential

2013 Insurance Risk Study

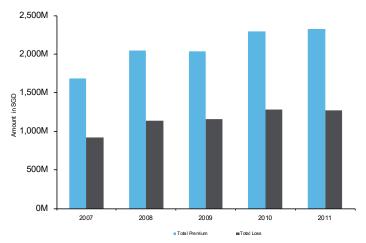
All


Net Results for Financial Years 2007 - 2011

<u>.</u>

Singapore

Financial Veer



Currency Number of Companies Number of Observations Loss Ratio Statistics				rt Type	Financial Year	
				Ratios	Paid	
			204 LAE 1	Гуре	Loss Only	
		All Observatio	ons La	irgest 25		
Premium Threshold		1.0 M		104.5 M	276.9 M	
Average Premium Size		50.3 M		228.4 M	M 319.1	
Average Loss Ratio		48.0%		57.7%	62.5%	
Std. Dev. Loss Ratio		36.6%		16.2%	11.19	
Loss Ratio Volatility (CV)		76.3%		28.0%	17.8%	
Loss Ratio Corr	elation Matrix					
	A&H	MAT	МОТ	PROP	WC	
A&H	100.0%	-1.2%	15.0%	-7.1%	0.3%	
MAT	-1.2%	100.0%	15.8%	9.2%	9.2%	
мот	15.0%	15.8%	100.0%	4.0%	35.5%	
PROP	-7.1%	9.2%	4.0%	100.0%	3.1%	

~~~

Denert Tun





 Proprietary and
 Sources: Monetary Authority of Singapore - Insurance Report Archive; analysis by Aon Benfield Analytics; VIX prices as of Aug 13, 2013

 Confidential

#### **Contact Information**

#### Stephen J. Mildenhall, PhD, FCAS, ASA, CERA

Aon Center for Innovation and Analytics

77 Robinson Road, #13-00

Singapore, 068896

+65.6231.6481 (office) / +65.9233.0670 (cell)

stephen.mildenhall@aon.com

